Finding Distances

Example 1: \(y = 4 - x^2 \). Find the distance from the \(y \)-axis and \(x \)-axis in terms of \(x \) and \(y \).

\[
\begin{align*}
\text{Solve for } x: & \quad y = 4 - x^2 \\
x^2 & = 4 - y \\
x & = \pm \sqrt{4 - y} \\
\text{Use only + because of graph.}
\end{align*}
\]

\[
\begin{align*}
d_1 &= y = 4 - x^2 \\
d_2 &= x = \sqrt{4 - y} \\
\end{align*}
\]

Example 2: \(x = -y^2 + 4y \).

Find the distance from the \(y \)-axis in terms of \(x \) and \(y \).

\[
d = x = -y^2 + 4y
\]

Example 3:

Find the distance from \(y = 3 - \frac{x^2}{2} \) to the line: \(y = 1 \) in terms of \(x \) and \(y \).

\[
d = \text{Top - Bottom} = (3 - \frac{x^2}{2}) - 1 \text{ or } d = y - 1
\]

Example 4: Find the distance from \(y = 3 - \frac{x^2}{2} \) to the line: \(y = -1 \) in terms of \(x \) and \(y \).

\[
\begin{align*}
d &= y + 1 \\
d &= 3 - \frac{x^2}{2} + 1
\end{align*}
\]

Example 5: Find the distance from \(y = 2x \) to the line: \(x = 2 \) in terms of \(x \) and \(y \).

\[
\begin{align*}
d_1 &= 2 \\
\text{Solve for } x: & \quad \pm \sqrt{\frac{y}{2}} = x \\
d_2 &= x \\
\text{or } d &= 2 - x \\
\end{align*}
\]

\[
\begin{align*}
d &= 2 - \sqrt{\frac{y}{2}}
\end{align*}
\]
Example 6: Find the distance from \(y = 2x^2, x \geq 0 \) to the line: \(x = -3 \) terms of \(x \) and \(y \).

\[
d = 3 + \frac{y}{3}
\]

Example 7: Find the distance from \(y = 2x^2, x \geq 0 \) to the line: \(y = 8 \) terms of \(x \) and \(y \).

\[
d = 8 - y
\]

Example 7: Find the indicated distances:

\(y = -(x-2)^2 + 3 \)

\[
r = x \\
h = y = -(x-2)^2 + 3
\]

Example 8: Find the indicated distances:

\(x = -(y-2)^2, y = x, y = 6, y = -1 \)

\[
h = \text{right} - \text{left} \\
h = \frac{1}{2} - (-(y-2)^2) \\
h = y + (y+2)
\]

\[
r_1 = 6 - y \\
r_2 = y + 1
\]
Review from Geometry: The volume of a cylinder

\[V = \pi r^2 h \]

Determine the Volume of a Solid of Revolution:
So, for the purposes of the derivation of the formula, let’s look at rotating the continuous function \(y = f(x) \) in the interval \([a, b]\) about the x-axis. Below is a sketch of a function and the solid of revolution we get by rotating the function about the x-axis.

Short animation: https://youtu.be/i4L5XoUBD_Q

The volume of the disk (a cylinder) is given by: \(\Delta V = \pi r^2 \Delta x \). Approximating the volume of the solid by \(n \) disks of width \(\Delta x \) with radius \(r(x) \), produces:

\[
\text{Volume of solid} \approx \sum_{i=1}^{n} \pi [r(x_i)]^2 \Delta x
\]

This approximation appears to become better and better as \(\Delta x \to 0 \) \((n \to \infty)\). Therefore,

\[
\text{Volume of solid} = \lim_{\Delta x \to 0} \pi \sum_{i=1}^{n} [r(x_i)]^2 \Delta x = \pi \int_{a}^{b} [r(x)]^2 dx
\]
As seen in animation, we can rotate functions around the y-axis:

The radius is now a function of y.

Volume of solid $= \pi \int_{c}^{d} [r(y)]^2 dy$

Note: the radius is ALWAYS perpendicular to axis of rotation.

Example 1: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis. $y = 4 - x^2$ (p.453: 2)

$$V = \pi \int_{0}^{2} [r(x)]^2 dx = \pi \int_{0}^{2} (4 - x^2) dx$$

$$= \pi \left[16x - \frac{8x^3}{3} + \frac{x^4}{5} \right]_{0}^{2}$$

$$= \pi \left[(16(2) - \frac{8(8)}{3} + \frac{32}{5}) - 0 \right] = \frac{256}{15} \pi$$

Example 2: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis. $y = 4 - x^2$

$$V = \pi \int_{0}^{4} [r(y)]^2 dy$$

$$V = \pi \int_{0}^{4} (4 - y^2) dy$$

$$V = \pi \left[4y - \frac{y^3}{3} \right]_{0}^{4}$$

$$V = \pi \left[(16 - \frac{16}{3}) - 0 \right]$$

$$V = 8\pi$$

Solve for x

$y = 4 - x^2$

$x^2 = 4 - y$

$\chi = \sqrt{4 - y}$

only need $\chi = \sqrt{4 - y}$

right-hand side
Example 3: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis. \[x = -y^2 + 4y \] (p.453: 10)

\[
V = \pi \int_{-2}^{4} (-(y^2 - 4y)^2) \, dy
\]

\[
V = \pi \int_{1}^{4} (y^4 - 8y^3 + 16y^2) \, dy
\]

\[
V = \pi \left[\frac{y^5}{5} - \frac{8y^4}{4} + \frac{16y^3}{3} \right]_{1}^{4}
\]

\[
V = \pi \left[\left(\frac{4^5}{5} - \frac{8(4)^4}{4} + \frac{16(4)^3}{3} \right) - \left(\frac{1}{5} - \frac{2}{4} + \frac{16}{3} \right) \right]
\]

\[
V = \pi \left[\frac{512}{15} - \frac{53}{15} \right] = \frac{459}{15} \pi = \frac{153}{5} \pi
\]

Revolving about a line that is NOT the x or y axis.

Example 4: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the line $y = 1$: \[y = 3 - \frac{x^2}{2} \]

\[
r = 3 - \frac{x^2}{2} - 1 = 2 - \frac{x^2}{2}
\]

\[
V = \pi \int_{-2}^{2} \left[(2 - \frac{x^2}{2})^2 \right] \, dx = \pi \int_{-2}^{2} \left(4 - 2x^2 + \frac{x^4}{4} \right) \, dx
\]

\[
V = \pi \left[(4x - \frac{2x^3}{3} + \frac{x^5}{20}) \right]_{-2}^{2}
\]

\[
V = \pi \left[\left(8 - \frac{16}{3} + \frac{32}{20} \right) - \left(-8 + \frac{16}{3} - \frac{32}{20} \right) \right]
\]

\[
V = \pi \left[\left(\frac{16}{5} \right) - \left(-\frac{16}{5} \right) \right] = \frac{128}{15} \pi
\]

Example 5: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the line $x = 2$: \[y = 2x^2 \] (p.453: 12d)

\[
r = 2 - x
\]

\[
r = 2 - \sqrt{\frac{y}{2}}
\]

\[
r = 2 - \sqrt{\frac{y}{2}}
\]

\[
V = \pi \int_{0}^{8} (2 - 1) \, dy = \pi \int_{0}^{8} \left(4 - 4\sqrt{\frac{y}{2}} \right) \, dy
\]

\[
V = \pi \left[(4y - 4\sqrt{\frac{y}{2}} + \frac{y}{2}) \right]_{0}^{8}
\]

\[
V = \pi \left[\left(32 - \frac{8}{3\sqrt{2}} (8^{3/2} + 64) \right) - 0 \right] = \frac{16}{3} \pi
\]

Solve for x

\[
\frac{y}{2} = x^2
\]

\[
\frac{y}{2} = x
\]
The disk method can be extended to cover solids of revolution with holes by replacing the representative disk with a representative washer.

Volume of the washer = $\pi (R^2 - r^2)w$
Where $R = \text{the outer radius}$ and $r = \text{inner radius}$
If rotated around a horizontal axis, then

Volume of solid = $\pi \int_a^b ([R(x)]^2 - [r(x)]^2)dx$

If rotated around a vertical axis, then

Volume of solid = $\pi \int_c^d ([R(y)]^2 - [r(y)]^2)dy$

Example 1: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by the graphs: $y = x^2$, $y = \sqrt{x}$, about x-axis.

\[V = \pi \int_0^1 \left((\sqrt{x})^2 - (x^2)^2 \right) dx \]
\[V = \pi \left[\left(\frac{x^2}{2} - \frac{x^5}{5} \right) \right]_0^1 \]
\[V = \pi \left[\left(\frac{1}{2} - \frac{1}{5} \right) - 0 \right] = \frac{3}{10} \pi \]

(answer is $\frac{3\pi}{10}$)
Example 2: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by the graphs: $y = 2x^2$, $y = 0$, $x = 2$ about the line $y = 8$. (p.453: 12c)

Example 3: Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by the graphs: $y = 2x^2$, $y = 0$, $x = 2$ about the y-axis. (p.453: 12a)

For the following problems, (a) Find the outer radius, R, and the inner radius, r, (b) find the limits of integration, and (c) set up the integral that gives the volume of the solid.

Classwork

1. $y = x^2$, $y = x$, about the y-axis.
2. $y = x^2$, $y = x$, about line $x = -1$.
3. $y = x^2$, $y = x$, about line $y = 3$.
4. $y = (x - 1)^2 + 1$, $y = 1$, $x = 0$, $x = 1$ about the x-axis.
5. $y = (x - 1)^2 + 1$, $y = 1$, $x = 0$, $x = 1$ about line $x = -1$.
6. $y = (x - 1)^2 + 1$, $y = 1$, $x = 0$, $x = 1$ about line $x = 2$.

\[\text{Solve for } x: \quad y = 2x^2 \]